Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The yellow fever mosquito Aedes aegypti possesses three genes encoding putative Na+-coupled cation chloride cotransporters (CCCs): aeNKCC1, aeCCC2, and aeCCC3. To date, none of the aeCCCs have been functionally characterized. Here we expressed aeCCC2 heterologously in Xenopus oocytes and measured the uptake of Li+ (a tracer for Na+) and Rb+ (a tracer for K+). Compared to control (H2O-injected) oocytes, the aeCCC2-expressing oocytes exhibited significantly greater uptake of Li+, but not Rb+. However, the uptake of Li+ was neither Cl-dependent nor inhibited by thiazide, loop diuretics, or amiloride, suggesting unconventional CCC activity. To determine if the Li+-uptake was mediated by a conductive pathway, we performed two-electrode voltage clamping (TEVC) on the oocytes. The aeCCC2 oocytes were characterized by an enhanced conductance for Li+ and Na+, but not K+, compared to control oocytes. It remains to be determined whether aeCCC2 directly mediates the Na+/Li+ conductance or whether heterologous expression of aeCCC2 stimulates an endogenous cation channel in the oocyte plasma membrane.

Details

Title
Heterologous Expression of Aedes aegypti Cation Chloride Cotransporter 2 (aeCCC2) in Xenopus laevis Oocytes Induces an Enigmatic Na+/Li+ Conductance
Author
Kalsi, Megha 1 ; Gillen, Christopher 2 ; Piermarini, Peter M 1   VIAFID ORCID Logo 

 Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA 
 Department of Biology, Kenyon College, Gambier, OH 43022 USA 
First page
71
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20754450
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548551696
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.