Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

CuO/ZnO composites are synthesized using a simple mechanochemical combustion method. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier transform infrared (FTIR) are used to characterize the prepared oxides. X-ray diffraction reveals that the prepared CuO/ZnO exhibit a wurtzite ZnO crystal structure and the composites are composed of CuO and ZnO. The strong peaks of the Cu, Zn, and O elements are exhibited in the EDX spectrum. The FTIR spectra appear at around 3385 cm−1 and 1637 cm−1, caused by O–H stretching, and 400 cm−1 to 590 cm−1, ascribable to Zn–O stretching. The photocatalytic performances of CuO/ZnO nanocomposites are investigated for the degradation of methylene blue (MB) aqueous solution in direct solar irradiation. The degradation value of MB with 5 wt % CuO/ZnO is measured to be 98%, after 2 h of solar irradiation. The reactive O2 and OH radicals play important roles in the photodegradation of MB. Mineralization of MB is around 91% under sunlight irradiation within 7 h. The photodegradation treatment for the textile wastewater using sunlight is an easy technique—simply handled, and economical. Therefore, the solar photodegradation technique may be a very effective method for the treatment of wastewater instead of photodegradation with the artificial and expensive Hg-Xe lamp.

Details

Title
Synthesis of CuO/ZnO Nanocomposites and Their Application in Photodegradation of Toxic Textile Dye
Author
Abdullah Al Mamun Sakib 1 ; Shah Md Masum 1 ; Hoinkis, Jan 2 ; Islam, Rafiqul 1 ; Md Ashraful Islam Molla 1   VIAFID ORCID Logo 

 Department of Applied Chemistry & Chemical Engineering, Faculty of Engineering & Technology, University of Dhaka, Dhaka 1000, Bangladesh; [email protected] (A.A.M.S.); [email protected] (S.M.M.); [email protected] (R.I.) 
 Centre of Applied Research (CAR), Karlsruhe University of Applied Sciences, 76133 Karlsruhe, Germany; [email protected] 
First page
91
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
2504477X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548561627
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.