Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Individual variation in animal venom has been linked to geographical location, feeding habit, season, size, and gender. Uniquely, cone snails possess the remarkable ability to change venom composition in response to predatory or defensive stimuli. To date, correlations between the venom gland transcriptome and proteome within and between individual cone snails have not been reported. In this study, we use 454 pyrosequencing and mass spectrometry to decipher the transcriptomes and proteomes of the venom gland and corresponding predation-evoked venom of two specimens of Conus imperialis. Transcriptomic analyses revealed 17 conotoxin gene superfamilies common to both animals, including 5 novel superfamilies and two novel cysteine frameworks. While highly expressed transcripts were common to both specimens, variation of moderately and weakly expressed precursor sequences was surprisingly diverse, with one specimen expressing two unique gene superfamilies and consistently producing more paralogs within each conotoxin gene superfamily. Using a quantitative labelling method, conotoxin variability was compared quantitatively, with highly expressed peptides showing a strong correlation between transcription and translation, whereas peptides expressed at lower levels showed a poor correlation. These results suggest that major transcripts are subject to stabilizing selection, while minor transcripts are subject to diversifying selection.

Details

Title
Transcriptomic-Proteomic Correlation in the Predation-Evoked Venom of the Cone Snail, Conus imperialis
Author
Ai-Hua, Jin 1 ; Dutertre, Sébastien 2   VIAFID ORCID Logo  ; Dutt, Mriga 1   VIAFID ORCID Logo  ; Lavergne, Vincent 3 ; Jones, Alun 1 ; Lewis, Richard J 1   VIAFID ORCID Logo  ; Alewood, Paul F 1 

 Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia 
 Institut des Biomolécules Max Mousseron, Département des acides amines, Peptides et Protéines, Unité Mixte de Recherche 5247, Université Montpellier 2—Centre Nationale de la Recherche Scientifique, Place Eugène Bataillon, 34095 Montpellier CEDEX 5, France 
 Léon Bérard Cancer Center, 28 rue Laennec, 69008 Lyon, France 
First page
177
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
16603397
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548651204
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.