Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Sea anemones’ venom is rich in peptides acting on different biological targets, mainly on cytoplasmic membranes and ion channels. These animals are also a source of pancreatic α-amylase inhibitors, which have the ability to control the glucose level in the blood and can be used for the treatment of prediabetes and type 2 diabetes mellitus. Recently we have isolated and characterized magnificamide (44 aa, 4770 Da), the major α-amylase inhibitor of the sea anemone Heteractis magnifica mucus, which shares 84% sequence identity with helianthamide from Stichodactyla helianthus. Herein, we report some features in the action of a recombinant analog of magnificamide. The recombinant peptide inhibits porcine pancreatic and human saliva α-amylases with Ki’s equal to 0.17 ± 0.06 nM and 7.7 ± 1.5 nM, respectively, and does not show antimicrobial or channel modulating activities. We have concluded that the main function of magnificamide is the inhibition of α-amylases; therefore, its functionally active recombinant analog is a promising agent for further studies as a potential drug candidate for the treatment of the type 2 diabetes mellitus.

Details

Title
Magnificamide, a β-Defensin-Like Peptide from the Mucus of the Sea Anemone Heteractis magnifica, Is a Strong Inhibitor of Mammalian α-Amylases
Author
Sintsova, Oksana 1 ; Gladkikh, Irina 1 ; Kalinovskii, Aleksandr 2 ; Zelepuga, Elena 1 ; Monastyrnaya, Margarita 1   VIAFID ORCID Logo  ; Kim, Natalia 1 ; Shevchenko, Lyudmila 1 ; Peigneur, Steve 3 ; Tytgat, Jan 3 ; Kozlovskaya, Emma 1 ; Leychenko, Elena 1 

 G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia; [email protected] (I.G.); [email protected] (A.K.); [email protected] (E.Z.); [email protected] (M.M.); [email protected] (N.K.); [email protected] (L.S.); [email protected] (E.K.) 
 G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia; [email protected] (I.G.); [email protected] (A.K.); [email protected] (E.Z.); [email protected] (M.M.); [email protected] (N.K.); [email protected] (L.S.); [email protected] (E.K.); School of Natural Sciences, Far Eastern Federal University, 8, Sukhanova St, Vladivostok 690090, Russia 
 Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N2, Herestraat 49, P.O. Box 922, Leuven B-3000, Belgium; [email protected] (S.P.); [email protected] (J.T.) 
First page
542
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
16603397
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548658822
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.