Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This article presents an example by which design loads for a wave energy converter (WEC) might be estimated through the various stages of the WEC design process. Unlike previous studies, this study considers structural loads, for which, an accurate assessment is crucial to the optimization and survival of a WEC. Three levels of computational fidelity are considered. The first set of design load approximations are made using a potential flow frequency-domain boundary-element method with generalized body modes. The second set of design load approximations are made using a modified version of the linear-based time-domain code WEC-Sim. The final set of design load simulations are realized using computational fluid dynamics coupled with finite element analysis to evaluate the WEC’s loads in response to both regular and focused waves. This study demonstrates an efficient framework for evaluating loads through each of the design stages. In comparison with experimental and high-fidelity simulation results, the linear-based methods can roughly approximate the design loads and the sea states at which they occur. The high-fidelity simulations for regular wave responses correspond well with experimental data and appear to provide reliable design load data. The high-fidelity simulations of focused waves, however, result in highly nonlinear interactions that are not predicted by the linear-based most-likely extreme response design load method.

Details

Title
A Wave Energy Converter Design Load Case Study
Author
Jennifer van Rij 1 ; Yi-Hsiang, Yu 1   VIAFID ORCID Logo  ; Guo, Yi 1 ; Coe, Ryan G 2   VIAFID ORCID Logo 

 National Renewable Energy Laboratory, Golden, CO 80303, USA 
 Sandia National Laboratories, Albuquerque, NM 87185, USA 
First page
250
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20771312
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548667515
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.