Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Both OGT1 (O-linked β-N-acetylglucosamine (O-GlcNAc) transferase isoform 1) and NSL3 (nonspecific lethal protein 3) are crucial components of the MOF (males absent on the first)/NSL histone acetyltransferase complex. We previously described how global histone H4 acetylation levels were modulated by OGT1/O-GlcNAcylation-mediated NSL3 stability. However, the specific modification site of NSL3 and its molecular mechanism of protein stability remain unknown. Here, we present evidence from biochemical experiments arguing that O-GlcNAcylation of NSL3 at Thr755 is tightly associated with holoenzyme activity of the MOF/NSL complex. Using in vitro O-GlcNAc-transferase assays combined with mass spectrometry, we suppose that the residue Thr755 on NSL3 C-terminus is the major site O-GlcNAc-modified by OGT1. Importantly, O-GlcNAcylation of this site is involved in the regulation of the ubiquitin-degradation of NSL3, because this site mutation (T755A) promotes the ubiquitin-mediated degradation of NSL3. Further in-depth research found that ubiquitin conjugating enzyme E2 S (UBE2S) accelerated the degradation of NSL3 via direct binding to it. Interestingly, OGT1 and UBE2S competitively bind to NSL3, suggesting the coordination of OGT1–UBE2S in regulating NSL3 stability. Furthermore, O-GlcNAcylation of NSL3 Thr755 site regulates the histone H4 acetylation levels at lysine 5, 8, and 16, suggesting that the O-GlcNAcylation of NSL3 at Thr755 is required for maintaining the integrity and holoenzyme activity of the MOF/NSL complex. In colony formation assays, we found that the integrity of the complex impacts the proliferation of the lung carcinoma type II epithelium-like A549 cells. Taken together, our results provide new insight into the elucidation of the molecular mechanism of the MOF/NSL complex.

Details

Title
O-GlcNAc-Modification of NSL3 at Thr755 Site Maintains the Holoenzyme Activity of MOF/NSL Histone Acetyltransferase Complex
Author
Zhao, Linhong 1 ; Li, Min 1 ; Tao, Wei 1 ; Chang, Feng 1 ; Wu, Tingting 1 ; Junaid Ali Shah 1 ; Liu, Hongsen 1 ; Wang, Fei 1 ; Cai, Yong 2 ; Jin, Jingji 2   VIAFID ORCID Logo 

 School of Life Sciences, Jilin University, Changchun City, Jilin 130012, China; [email protected] (L.Z.); [email protected] (M.L.); [email protected] (T.W.); [email protected] (C.F.); [email protected] (T.W.); [email protected] (J.A.S.); [email protected] (H.L.); [email protected] (F.W.) 
 School of Life Sciences, Jilin University, Changchun City, Jilin 130012, China; [email protected] (L.Z.); [email protected] (M.L.); [email protected] (T.W.); [email protected] (C.F.); [email protected] (T.W.); [email protected] (J.A.S.); [email protected] (H.L.); [email protected] (F.W.); School of Pharmacy, Changchun University of Chinese Medicine, Changchun City, Jilin 130117, China 
First page
173
Publication year
2020
Publication date
2020
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548680074
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.