Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The paper deals with the experimental study of laser beam micromachining of the powder metallurgy processed Ti compacts applying the industrial grade fibre nanosecond laser operating at the wavelength of 1064 nm. The influence of the laser energy density on the surface roughness, surface morphology and surface elements composition was investigated and evaluated by means of surface roughness measurement, scanning electron microscopy (SEM), energy dispersive X-Ray spectroscopy (EDS) and X-ray diffraction (XRD) analysis. The different laser treatment parameters resulted in the surfaces of very different characteristics of the newly developed biocompatible material prepared by advanced low temperature technology of hydride dehydride (HDH) titanium powder compactation. The results indicate that the laser pulse energy has remarkable effects on the machined surface characteristics which are discussed from the point of view of application in dental implantology.

Details

Title
A Study of Laser Micromachining of PM Processed Ti Compact for Dental Implants Applications
Author
Šugár, Peter 1   VIAFID ORCID Logo  ; Kováčik, Jaroslav 2   VIAFID ORCID Logo  ; Šugárová, Jana 1 ; Ludrovcová, Barbora 1 

 Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, 917 24 Trnava, Slovakia 
 Slovak Academy of Sciences, Institute of Materials and Machine Mechanics, Dúbravská cesta 9, 845 13 Bratislava, Slovakia 
First page
2246
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548683243
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.