Full Text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This research was performed so as to investigate the additive manufacturing of NiTi shape memory alloys, which is associated with direct processes, such as selective laser melting. In addition to its expensive production costs, NiTi readily undergoes chemical and phase modifications, mainly as a result of Ni loss during processing as a result of high temperatures. This research explores the potential usefulness of NiTi as well as its limitations using indirect additive processes, such as fused filament fabrication (FFF). The first step was to evaluate the NiTi critical powder volume content (CPVC) needed to process high-quality filaments (via extrusion). A typical 3D printer can build a selected part/system/device layer-by-layer from the filaments, followed by debinding and sintering (SDS), in order to generate a near-net-shape object. The mixing, extruding (filament), printing (shaping), debinding, and sintering steps were extensively studied in order to optimize their parameters. Moreover, for the sintering step, two main targets should be met, namely: the reduction of contamination during the process in order to avoid the formation of secondary phases, and the decrease in sintering temperature, which also contributes to reducing the production costs. This study aims to demonstrate the possibility of using FFF as an additive manufacturing technology for processing NiTi.

Details

Title
In Search of the Optimal Conditions to Process Shape Memory Alloys (NiTi) Using Fused Filament Fabrication (FFF)
Author
Carreira, Pedro 1 ; Cerejo, Fábio 2   VIAFID ORCID Logo  ; Alves, Nuno 1   VIAFID ORCID Logo  ; Vieira, Maria Teresa 3   VIAFID ORCID Logo 

 CDRSP—Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Rua General Norton de Matos, Apartado 4133, 2411-901 Leiria, Portugal 
 IPN—Instituto Pedro Nunes, Rua Pedro Nunes, 3030-199 Coimbra, Portugal; [email protected] 
 CEMMPRE—Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Pinhal de Marrocos, 3030-788 Coimbra, Portugal 
First page
4718
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548726022
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.