Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Metabolomics aims to measure and characterise the complex composition of metabolites in a biological system. Metabolomics studies involve sophisticated analytical techniques such as mass spectrometry and nuclear magnetic resonance spectroscopy, and generate large amounts of high-dimensional and complex experimental data. Open source processing and analysis tools are of major interest in light of innovative, open and reproducible science. The scientific community has developed a wide range of open source software, providing freely available advanced processing and analysis approaches. The programming and statistics environment R has emerged as one of the most popular environments to process and analyse Metabolomics datasets. A major benefit of such an environment is the possibility of connecting different tools into more complex workflows. Combining reusable data processing R scripts with the experimental data thus allows for open, reproducible research. This review provides an extensive overview of existing packages in R for different steps in a typical computational metabolomics workflow, including data processing, biostatistics, metabolite annotation and identification, and biochemical network and pathway analysis. Multifunctional workflows, possible user interfaces and integration into workflow management systems are also reviewed. In total, this review summarises more than two hundred metabolomics specific packages primarily available on CRAN, Bioconductor and GitHub.

Details

Title
The metaRbolomics Toolbox in Bioconductor and beyond
Author
Stanstrup, Jan 1   VIAFID ORCID Logo  ; Broeckling, Corey D 2   VIAFID ORCID Logo  ; Helmus, Rick 3   VIAFID ORCID Logo  ; Hoffmann, Nils 4   VIAFID ORCID Logo  ; Ewy Mathé 5   VIAFID ORCID Logo  ; Naake, Thomas 6   VIAFID ORCID Logo  ; Nicolotti, Luca 7   VIAFID ORCID Logo  ; Peters, Kristian 8   VIAFID ORCID Logo  ; Rainer, Johannes 9   VIAFID ORCID Logo  ; Salek, Reza M 10   VIAFID ORCID Logo  ; Schulze, Tobias 11   VIAFID ORCID Logo  ; Schymanski, Emma L 12   VIAFID ORCID Logo  ; Stravs, Michael A 13   VIAFID ORCID Logo  ; Thévenot, Etienne A 14   VIAFID ORCID Logo  ; Treutler, Hendrik 8   VIAFID ORCID Logo  ; Weber, Ralf J M 15   VIAFID ORCID Logo  ; Willighagen, Egon 16   VIAFID ORCID Logo  ; Witting, Michael 17   VIAFID ORCID Logo  ; Neumann, Steffen 18   VIAFID ORCID Logo 

 Preventive and Clinical Nutrition, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg C, Denmark 
 Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO 80523, USA; [email protected] 
 Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; [email protected] 
 Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Otto-Hahn-Straße 6b, 44227 Dortmund, Germany; [email protected] 
 Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; [email protected] 
 Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; [email protected] 
 The Australian Wine Research Institute, Metabolomics Australia, PO Box 197, Adelaide SA 5064, Australia; [email protected] 
 Leibniz Institute of Plant Biochemistry (IPB Halle), Bioinformatics and Scientific Data, 06120 Halle, Germany; [email protected] (K.P.); [email protected] (H.T.) 
 Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy; [email protected] 
10  The International Agency for Research on Cancer, 150 cours Albert Thomas, CEDEX 08, 69372 Lyon, France; [email protected] 
11  Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research—UFZ, Permoserstraße 15, 04318 Leipzig, Germany; [email protected] 
12  Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 avenue du Swing, L-4367 Belvaux, Luxembourg; [email protected] 
13  Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dubendorf, Switzerland; [email protected] 
14  CEA, LIST, Laboratory for Data Sciences and Decision, MetaboHUB, Gif-Sur-Yvette F-91191, France; [email protected] 
15  Phenome Centre Birmingham and School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; [email protected] 
16  Department of Bioinformatics—BiGCaT, NUTRIM, Maastricht University, 6229 ER Maastricht, The Netherlands; [email protected] 
17  Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, 85764 Neuherberg, Germany; [email protected]; Chair of Analytical Food Chemistry, Technische Universität München, 85354 Weihenstephan, Germany 
18  Leibniz Institute of Plant Biochemistry (IPB Halle), Bioinformatics and Scientific Data, 06120 Halle, Germany; [email protected] (K.P.); [email protected] (H.T.); German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig Deutscher, Platz 5e, 04103 Leipzig, Germany 
First page
200
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
22181989
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548817306
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.