Full Text

Turn on search term navigation

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Nowadays, there is increasing interest in advanced simulation methods for desalination. The two most common desalination methods are multi-stage flash distillation (MSF) and reverse osmosis (RO). Numerous research works have been published on these separations, however their simulation appears to be difficult due to their complexity, therefore continuous improvement is required. The RO, in particular, is difficult to model, because the liquids to be separated also depend specifically on the membrane material. The aim of this study is to model steady-state desalination opportunities of saline process wastewater in flowsheet environment. Commercial flowsheet simulator programs were investigated: ChemCAD for thermal desalination and WAVE program for membrane separation. The calculation of the developed MSF model was verified based on industrial data. It can be stated that both simulators are capable of reducing saline content from 4.5 V/V% to 0.05 V/V%. The simulation results are in accordance with the expectations: MSF has higher yield, but reverse osmosis is simpler process with lower energy demand. The main additional value of the research lies in the comparison of desalination modelling in widely commercially available computer programs. Furthermore, complex functions are established between the optimized operating parameters of multi-stage flash distillation allowing to review trends in flash steps for complete desalination plants.

Details

Title
Modelling and Optimisation of Multi-Stage Flash Distillation and Reverse Osmosis for Desalination of Saline Process Wastewater Sources
Author
Andras Jozsef Toth 1   VIAFID ORCID Logo 

 Environmental and Process Engineering Research Group, Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary; [email protected]; Tel.: +36-1-463-1490; Institute of Chemistry, University of Miskolc, Egyetemváros C/1 108, H-3515 Miskolc, Hungary 
First page
265
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20770375
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548819755
Copyright
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.