Full Text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The relationship between precipitate morphology and dissolution on grain coarsening behavior was studied in two Ti-Nb microalloyed Linepipe (LP) Steels. The developed understanding highlights the importance of the complex relationship between precipitate constitutive make-up, dissolution mechanism and grain boundary (GB) pinning force. Equilibrium-based empirical solubility products were used to calculate precipitate volume fractions and compared to experimental measurements. Scanning Electron Microscopy (SEM), Electron Backscatter Diffraction (EBSD) and Electron Probe Micro-Analysis (EPMA) were conducted on bulk samples. Transmission Electron Microscopy (TEM)-based techniques were used on C-replica extractions and thin-foils. A retardation in the grain-coarsening temperature compared to the predicted coarsening temperature based on equilibrium calculations was noticed. In addition, a consistent NbC epitaxial formation over pre-existing TiN was observed. The resulting reduction in total precipitate/matrix interface area and the low energy of the TiN/NbC interface are pointed to as responsible mechanisms for the retardation in the kinetics of precipitates’ dissolution. This dissolution retardation mechanism suggests that a lower Nb content might be effective in controlling the grain coarsening behavior of austenite.

Details

Title
Impact of Precipitate Morphology on the Dissolution and Grain-Coarsening Behavior of a Ti-Nb Microalloyed Linepipe Steel
Author
Solis-Bravo, Gregorio 1   VIAFID ORCID Logo  ; Merwin, Matthew 2 ; Garcia, C Isaac 1 

 Ferrous Physical Metallurgy Group, University of Pittsburgh, Pittsburgh, PA 15261, USA; [email protected] 
 United States Steel Corporation, Pittsburgh, PA 15120, USA; [email protected] 
First page
89
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20754701
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548843697
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.