Full text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Wind turbines are complex systems that use advanced condition monitoring systems for analyzing their health status. The gearbox is one of the most critical components due to its elevated downtime and failure rate. Supervisory Control and Data Acquisition systems are employed in wind farms for condition monitoring and control in real time. The volume and variety of the data require novel and robust techniques for data analysis. The main novelty of this work is the development of a new modelling of the temperature curve of the gearbox bearing versus wind speed to detect false alarms. An approach based on data partitioning and data mining centers is employed. The wind speed range is divided into intervals to increase the accuracy of the model, where the centers are considered representative samples in the modelling. A method based on the alarm detection is developed and studied together with the alarms report provided by a real case study. The results obtained allow the identification of critical alarm periods outside the confidence interval. It is validated that the study of alarm identification, pre-filtered data, state variable, and output power contribute to the detection of the false alarms.

Details

Title
False Alarms Analysis of Wind Turbine Bearing System
Author
Peco Chacón, Ana María  VIAFID ORCID Logo  ; Isaac Segovia Ramírez
First page
7867
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548844865
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.