Full text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Concerns over the environmental influence of greenhouse gas (GHG) emissions have encouraged researchers to develop alternative power technologies. Among the most promising, environmentally friendly power technologies for large-scale applications are solar power tower plants. The implementation of this technology calls for practical modeling and simulation tools to both size the plant and investigate the scale effect on its economic indices. This paper proposes a methodology to design the main components of solar power tower plants and to estimate the specific investment costs and the economic indices. The design approach used in this study was successfully validated through a comparison with the design data of two operational commercial power tower plants; namely, Gemasolar (medium-scale plant of 19.9 MWe) and Crescent Dunes (large-scale plant of 110 MWe). The average uncertainty in the design of a fully operational power tower plant is 8.75%. A cost estimation showed the strong influence of the size of the plant on the investment costs, as well as on the economic indices, including payback period, internal rate of return, total life charge costs, and levelized cost of electricity. As an illustrative example, the methodology was applied to design six solar power tower plants in the range of 10–100 MWe for integration into mining processes in Chile. The results show that the levelized cost of electricity decreases from 156 USD/MWhe for the case of a 10-MWe plant to 131 USD/MWhe for the case of a 100-MWe plant. The internal rate of return of plants included in the analyses ranges from 0.77% (for the 10-MWe case) to 2.37% (for 100-MWe case). Consequently, the simple payback ranges from 16 years (for the 100-MWe case) to 19 years (for the 10-MWe case). The sensitivity analysis shows that the size of the solar receiver heavily depends on the allowable heat flux. The degradation rate and the discount rate have a strong influence on economic indices. In addition, both the operation and the deprecation period, as well as the price of electricity, have a crucial impact on the viability of a solar power tower plant. The proposed methodology has great potential to provide key information for prospective analyses for the implementation of power tower technologies to satisfy clean energy needs under a wide range of conditions.

Details

Title
A Practical Methodology for the Design and Cost Estimation of Solar Tower Power Plants
Author
Behar, Omar 1   VIAFID ORCID Logo  ; Sbarbaro, Daniel 1 ; Morán, Luis 1 

 Solar Energy Research Center (SERC-Chile), Av. Tupper 2007 Piso 4, Santiago 8370451, Chile; [email protected] (D.S.); [email protected] (L.M.); Faculty of Engineering, University of Concepcion, Víctor Lamas 1290, Concepción, Chile 
First page
8708
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548864271
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.