Full Text

Turn on search term navigation

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Optimization problems are relevant to various areas of human activity. In different cases, the problems are solved by applying appropriate optimization methods. A range of optimization problems has resulted in a number of different methods and algorithms for reaching solutions. One of the problems deals with the decision-making area, which is an optimal option selected from several options of comparison. Multi-Attribute Decision-Making (MADM) methods are widely applied for making the optimal solution, selecting a single option or ranking choices from the most to the least appropriate. This paper is aimed at providing MADM methods as a component of mathematics-based optimization. The theoretical part of the paper presents evaluation criteria of methods as the objective functions. To illustrate the idea, some of the most frequently used methods in practice—Simple Additive Weighting (SAW), Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), Complex Proportional Assessment Method (COPRAS), Multi-Objective Optimization by Ratio Analysis (MOORA) and Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE)—were chosen. These methods use a finite number of explicitly given alternatives. The research literature does not propose the best or most appropriate MADM method for dealing with a specific task. Thus, several techniques are frequently applied in parallel to make the right decision. Each method differs in the data processing, and therefore the results of MADM methods are obtained on different scales. The practical part of this paper demonstrates how to combine the results of several applied methods into a single value. This paper proposes a new approach for evaluating that involves merging the results of all applied MADM methods into a single value, taking into account the suitability of the methods for the task to be solved. Taken as a basis is the fact that if a method is more stable to a minor data change, the greater importance (weight) it has for the merged result. This paper proposes an algorithm for determining the stability of MADM methods by applying the statistical simulation method using a sequence of random numbers from the given distribution. This paper shows the different approaches to normalizing the results of MADM methods. For arranging negative values and making the scales of the results of the methods equal, Weitendorf’s linear normalization and classical and author-proposed transformation techniques have been illustrated in this paper.

Details

Title
Multi-Attribute Decision-Making Methods as a Part of Mathematical Optimization
Author
Vinogradova, Irina
First page
915
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548932377
Copyright
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.