Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Electric double-layer capacitors (EDLCs) are energy storage devices that have attracted attention from the scientific community due to their high specific power storage capabilities. The standard method for determining the maximum power (Pmax) of these devices uses the relation Pmax = U2/4RESR, where U stands for the cell voltage and RESR for the equivalent series resistance. Despite the relevance of RESR, one can observe a lack of consensus in the literature regarding the determination of this parameter from the galvanostatic charge-discharge findings. In addition, a literature survey revealed that roughly half of the scientific papers have calculated the RESR values using the electrochemical impedance spectroscopy (EIS) technique, while the other half used the galvanostatic charge discharge (GCD) method. RESR values extracted from EIS at high frequencies (>10 kHz) do not depend on the particular equivalent circuit model. However, the conventional GCD method better resembles the real situation of the device operation, and thus its use is of paramount importance for practical purposes. In the latter case, the voltage drop (ΔU) verified at the charge-discharge transition for a given applied current (I) is used in conjunction with Ohm’s law to obtain the RESR (e.g., RESR = ΔUI). However, several papers have caused a great confusion in the literature considering only applied current (I). In order to shed light on this important subject, we report in this work a rational analysis regarding the GCD method in order to prove that to obtain reliable RESR values the voltage drop must be normalized by a factor of two (e.g., RESR = ΔU/2I).

Details

Title
How to Measure and Calculate Equivalent Series Resistance of Electric Double-Layer Capacitors
Author
Vicentini, Rafael 1   VIAFID ORCID Logo  ; Leonardo Morais Da Silva 2   VIAFID ORCID Logo  ; Edson Pedro Cecilio Junior 1 ; Thayane Almeida Alves 1 ; Willian Gonçalves Nunes 1 ; Hudson Zanin 1 

 Advanced Energy Storage Division, Center for Innovation on New Energies, Carbon Sci-Tech Labs, School of Electrical and Computer Engineering, University of Campinas, Av Albert Einstein 400, Campinas, SP 13083-852, Brazil 
 Department of Chemistry, Federal University of Jequitinhonha e Mucuri’s Valley, Highway MGT 367, km 583, 5000, Alto da Jacuba, Diamantina, MG 39100-000, Brazil 
First page
1452
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548935641
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.