Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The zeolitic imidazolate framework-8 (ZIF-8) combines a significantly high microporosity with an excellent thermal, chemical, and hydrothermal stability. Here, we demonstrated that ZIF-8 can display significant levels of protonic conductivity through a water-mediated surface transport mechanism associated to the presence of di-coordinated Zn ions revealed by X-ray photoelectron spectroscopy. A set of powders with particle sizes from 2.8 µm down to 80 nm studied by dynamic water vapour sorption analysis was used to demonstrate that water adsorbs predominantly in the micropore cavities of microcrystalline ZIF-8, whereas adsorption on the external surface becomes the dominant contribution for the nanostructured material. Impedance spectroscopy in turn revealed that the protonic conductivity of the nanocrystalline ZIF-8 was two orders of magnitude higher than that of the micron-sized powders, reaching approximately 0.5 mS·cm−1 at 94 °C and 98% relative humidity. Simple relations were derived in order to estimate the potential gains in water uptake and conductivity as a function of the particle size. This new strategy combining particle nanostructuring with surface defects, demonstrated here for one of the most know metal organic framework, is of general application to potentially boost the conductivity of other materials avoiding chemical functionalization strategies that in most if not all cases compromise their chemical stability, particularly under high humidity and high temperature conditions.

Details

Title
High Surface Proton Conduction in Nanostructured ZIF-8
First page
1369
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548992997
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.