Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The increased use of electric arc furnace (EAF) steelmaking using up to 100% direct reduced iron (DRI) has prompted an interest in better control of phosphorus since iron ore and, consequently, DRI have higher phosphorus and silica compared to scrap. There is limited work reported on slag chemistries corresponding to that in the EAF when DRI is used. In the current research, phosphorus equilibria between molten Fe–P alloys and CaO-SiO2-Al2O3-P2O5-FeO-MgOsaturated slags were investigated. The results indicate that there is a significant decrease in the phosphorus partition coefficient (LP) as alumina in the slag increases. The observed effect of alumina on the phosphorus partition is probably caused by the decrease in the activities of iron oxide and calcium oxide. Finally, an equilibrium correlation for phosphorus partition as a function of slag composition and temperature has been developed. It includes the effect of alumina and silica and is suitable for both oxygen and electric steelmaking-type slags.

Details

Title
Phosphorus Equilibrium Between Liquid Iron and CaO-SiO2-MgO-Al2O3-FeO-P2O5 Slags: EAF Slags, the Effect of Alumina and New Correlation
Author
Assis, Andre N 1 ; Tayeb, Mohammed A 2 ; Seetharaman Sridhar 3 ; Fruehan, Richard J 4 

 Vallourec Tubes, 2669 Martin Luther King Jr. Blvd, Youngstown, OH 44510, USA 
 SABIC, Jeddah, 23955, Saudi Arabia 
 Metallurgical and Materials Engineering, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, USA 
 Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA 
First page
116
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20754701
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2549006160
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.