Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Four novel xanthohumol (XN) cocrystals with pharmaceutically acceptable coformers, such as nicotinamide (NIC), glutarimide (GA), acetamide (AC), and caffeine (CF) in the 1:1 stoichiometry were obtained by the slow evaporation solution growth technique. The structure of the cocrystals was determined by single crystal X-ray diffraction. The analysis of packing and interactions in the crystal lattice revealed that molecules in the target cocrystals were packed into almost flat layers, formed by the O–H⋅⋅⋅O, O–H⋅⋅⋅N, and N–H⋅⋅⋅O-type contacts between the xanthohumol and coformer molecules. The results provided details about synthons responsible for crystal net stabilization and all hydrogen bonds observed in the crystal lattice. The main synthon was formed via the hydrogen bond between the hydroxyl group in the B ring of XN and coformers. The three-dimensional crystal lattice was stabilized by the hydrogen XN−XN interactions whereas the π–π stacking interactions played an additional role in layer binding, with the exception of low quality cocrystals formed with caffeine. Application of FTIR and Raman spectroscopy confirmed that the crystalline phase of obtained cocrystals was not a simple combination of individual components and completely different crystal phases resulted from the effect of intermolecular interactions. The multivariate analysis showed the changes in the spectra, and this technique can be applied in a combination with vibrational spectroscopy for fast screening of new crystal phases. Additionally, the solubility studies of pure XN and its cocrystals exhibited a 2.6-fold enhancement in XN solubility in aqueous solution for XN–AC and, to a lesser extent, for other cocrystals.

Details

Title
Formation of Prenylated Chalcone Xanthohumol Cocrystals: Single Crystal X-ray Diffraction, Vibrational Spectroscopic Study Coupled with Multivariate Analysis
Author
Budziak, Iwona 1   VIAFID ORCID Logo  ; Arczewska, Marta 2   VIAFID ORCID Logo  ; Kamiński, Daniel M 3   VIAFID ORCID Logo 

 Department of Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland; [email protected] 
 Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland 
 Department of General and Coordination Chemistry and Crystallography, Institute of Chemical Sciences, Maria Curie-Sklodowska University in Lublin, pl. Marii Curie-Skłodowskiej 2, 20-031 Lublin, Poland 
First page
4245
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2549017816
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.