Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In the present study, the methods of optical, scanning electron, and transmission electron microscopy as well as X-ray diffraction analysis gained insights into the mechanisms of surface finish and microstructure formation of Ti–6Al–4V parts during an EBF3-process. It was found that the slip band propagation within the outermost surface layer provided dissipation of the stored strain energy associated with martensitic transformations. The latter caused the lath fragmentation as well as precipitation of nanosized β grains and an orthorhombic martensite α″ phase at the secondary α lath boundaries of as-built Ti–6Al–4V parts. The effect of continuous electron beam post-treatment on the surface finish, microstructure, and mechanical properties of EBF3-fabricated Ti–6Al–4V parts was revealed. The brittle outermost surface layer of the EBF3-fabricated samples was melted upon the treatment, resulting in the formation of equiaxial prior β grains of 20 to 30 μm in size with the fragmented acicular α′ phase. Electron-beam irradiation induced transformations within the 70 μm thick molten surface layer and 500 μm thick heat affected zone significantly increased the Vickers microhardness and tensile strength of the EBF3-fabricated Ti–6Al–4V samples.

Details

Title
Continuous Electron Beam Post-Treatment of EBF3-Fabricated Ti–6Al–4V Parts
Author
Panin, Alexey 1   VIAFID ORCID Logo  ; Kazachenok, Marina 2 ; Perevalova, Olga 2 ; Martynov, Sergey 2 ; Panina, Alexandra 3 ; Sklyarova, Elena 3 

 Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, 634055 Tomsk, Russia; School of Nuclear Science & Engineering, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia 
 Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, 634055 Tomsk, Russia 
 School of Nuclear Science & Engineering, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia 
First page
699
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20754701
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2549095693
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.