It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Our results from playas, which are topographic low areas situated in closed-catchments in drylands, indicated that projected climate change in Southwestern USA would have a net positive impact over runon and groundwater recharge beneath playas. Expected increased precipitation variability can cause up to a 300% increase in annual groundwater recharge beneath playas. This increase will overshadow the effect of decreased precipitation amount that could cause up to a 50% decrease in recharge beneath playas. These changes could have a significant impact on groundwater and carbon storage. These results are important given that groundwater resources in Southwestern USA continue to decline due to human consumption outpacing natural recharge of aquifers. Here, we report on groundwater recharge rates ranging from less than 1 mm to greater than 25 mm per year beneath desert playas. Playas located in larger and steeper catchments with finer-textured soils had the highest rates of recharge. Vegetation cover had no effect on recharge beneath playas. We modeled catchment runoff generation and found that the amount of runon a playa receives annually strongly correlated to the rate of groundwater recharge beneath that playa. Runon occurred during precipitation events larger than 20 mm and increased linearly with events above that threshold.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Global Drylands Center, Arizona State University, Tempe, AZ, 85287-4601, United States of America; School of Life Sciences, Arizona State University, Tempe, AZ, 85287-4601, United States of America; Author to whom any correspondence should be addressed.
2 Global Drylands Center, Arizona State University, Tempe, AZ, 85287-4601, United States of America; School of Life Sciences, Arizona State University, Tempe, AZ, 85287-4601, United States of America; School of Sustainability, Arizona State University, Tempe, AZ, 85287-4501, United States of America