Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The paper deals with the assessment of the age of oak wood (0, 10, 40, 80 and 120 years) on its fire resistance. Chemical composition of wood (extractives, cellulose, holocellulose, lignin) was determined by wet chemistry methods and elementary analysis was performed according to ISO standards. From the fire-technical properties, the flame ignition and the spontaneous ignition temperature (including calculated activation energy) and mass burning rate were evaluated. The lignin content does not change, the content of extractives and cellulose is higher and the content of holocellulose decreases with the higher age of wood. The elementary analysis shows the lowest proportion content of nitrogen, sulfur, phosphor and the highest content of carbon in the oldest wood. Values of flame ignition and spontaneous ignition temperature for individual samples were very similar. The activation energy ranged from 42.4 kJ·mol−1 (120-year-old) to 50.7 kJ·mol−1 (40-year-old), and the burning rate varied from 0.2992%·s−1 (80-year-old) to 0.4965%·s−1 (10-year-old). The difference among the values of spontaneous ignition activation energy is clear evidence of higher resistance to initiation of older wood (40- and 80-year-old) in comparison with the younger oak wood (0- and 10-year-old). The oldest sample is the least thermally resistant due to the different chemical composition compared to the younger wood.

Details

Title
Effect of Natural Aging on Oak Wood Fire Resistance
Author
Zachar, Martin 1 ; Čabalová, Iveta 2   VIAFID ORCID Logo  ; Kačíková, Danica 1   VIAFID ORCID Logo  ; Jurczyková, Tereza 3 

 Department of Fire Protection, Faculty of Wood Sciences and Technology, Technical University in Zvolen, T. G. Masaryka 24, 960 53 Zvolen, Slovakia; [email protected] (M.Z.); [email protected] (D.K.) 
 Department of Chemistry and Chemical Technologies, Faculty of Wood Sciences and Technology, Technical University in Zvolen, T. G. Masaryka 24, 960 53 Zvolen, Slovakia 
 Department of Wood Processing, Czech University of Life Sciences in Prague, Kamýcká 1176, 16521 Praha 6-Suchdol, Czech Republic; [email protected] 
First page
2059
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2549534623
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.