Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We demonstrated in this work the use of affinity ionic liquids, AIL 1 and AIL 2, for chemoselective detection of amine and alcohol gases on a quartz crystal microbalance (QCM). These detections of gaseous amines and alcohols were achieved by nucleophilic aromatic substitution reactions with the electrophilic 1,3,5-triazine-based AIL 1 thin-coated on quartz chips. Starting with inexpensive reagents, bicyclic imidazolium ionic liquids AIL 1 and AIL 2 were readily synthesized in six and four synthetic steps with high isolated yields: 51% and 63%, respectively. The QCM platform developed in this work is readily applicable and highly sensitive to low molecular weight amine gases: for isobutylamine gas (a bacterial volatile) at 10 Hz decrease in resonance frequency (i.e., ΔF = −10 Hz), the detectability using AIL 1 was 6.3 ppb. Our preliminary investigation on detection of the much less nucleophilic alcohol gas by AIL 1 was also promising. To our knowledge, no example to date of reports based on nucleophilic aromatic substitution reactions demonstrating sensitive gas detection in these triazine ionic liquids on a QCM has been reported.

Details

Title
Reaction-Based Amine and Alcohol Gases Detection with Triazine Ionic Liquid Materials
Author
Li, Hsin-Yi
First page
104
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550216501
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.