Full Text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Luteolin is a kind of natural flavonoid with many bioactivities purified from a variety of natural herbs, fruits and vegetables. Electrochemical sensing has become an outstanding technology for the detection of luteolin in low concentration due to its fast response, easy operation and low cost. In this study, electroreduced graphene oxide (ErGO) and UiO-66 were successively modified onto a glassy carbon electrode (UiO-66/ErGO/GCE) and applied to the detection of luteolin. A combination of UiO-66 and ErGO showed the highest promotion in the oxidation peak current for luteolin compared with those of a single component. The factors affecting the electrochemical behavior of UiO-66/ErGO/GCE were evaluated and optimized including pH, accumulation potential, accumulation time and scan rate. Under optimum conditions, UiO-66/ErGO/GCE showed satisfactory linearity (from 0.001 μM to 20 μM), reproducibility and storage stability. The detection limit of UiO-66/ErGO/GCE reached 0.75 nM of luteolin and was suitable for testing real samples. Stable detection could be provided at least eight times by one modified electrode, which guaranteed the practicability of the proposed sensor. The fabricated UiO-66/ErGO/GCE showed a rapid electrochemical response and low consumption of materials in the detection of luteolin. It also showed satisfactory accuracy for real samples with good recovery. In conclusion, the modification using MOFs and graphene materials made the electrode advanced property in electrochemical sensing of natural active compounds.

Details

Title
Ultrasensitive Electrochemical Sensor for Luteolin Based on Zirconium Metal-Organic Framework UiO-66/Reduced Graphene Oxide Composite Modified Glass Carbon Electrode
Author
Wang, Qian 1 ; Gu, Chunmeng 2 ; Fu, Yafen 2 ; Liu, Liangliang 2   VIAFID ORCID Logo  ; Xie, Yixi 1   VIAFID ORCID Logo 

 Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; [email protected] (Q.W.); [email protected] (C.G.); [email protected] (Y.F.); Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, China 
 Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; [email protected] (Q.W.); [email protected] (C.G.); [email protected] (Y.F.) 
First page
4557
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550216590
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.