Full Text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We introduce two novel solution-processable electron acceptors based on an isomeric core of the much explored diketopyrrolopyrrole (DPP) moiety, namely pyrrolo[3,2-b]pyrrole-1,4-dione (IsoDPP). The newly designed and synthesized compounds, 6,6′-[(1,4-bis{4-decylphenyl}-2,5-dioxo-1,2,4,5-tetrahydropyrrolo[3,2-b]pyrrole-3,6-diyl)bis(thiophene-5,2-diyl)]bis[2-(2-butyloctyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione] (NAI-IsoDPP-NAI) and 5,5′-[(1,4-bis{4-decylphenyl}-2,5-dioxo-1,2,4,5-tetrahydropyrrolo[3,2-b]pyrrole-3,6-diyl)bis(thiophene-5,2-diyl)]bis[2-(2-butyloctyl)isoindoline-1,3-dione] (PI-IsoDPP-PI) have been synthesized via Suzuki couplings using IsoDPP as a central building block and napthalimide or phthalimide as end-capping groups. The materials both exhibit good solubility in a wide range of organic solvents including chloroform (CF), dichloromethane (DCM), and tetrahydrofuran (THF), and have a high thermal stability. The new materials absorb in the wavelength range of 300–600 nm and both compounds have similar electron affinities, with the electron affinities that are compatible with their use as acceptors in donor-acceptor bulk heterojunction (BHJ) organic solar cells. BHJ devices comprising the NAI-IsoDPP-NAI acceptor with poly(3-n-hexylthiophene) (P3HT) as the donor were found to have a better performance than the PI-IsoDPP-PI containing cells, with the best device having a VOC of 0.92 V, a JSC of 1.7 mAcm−2, a FF of 63%, and a PCE of 0.97%.

Details

Title
Pyrrolo[3,2-b]pyrrole-1,4-dione (IsoDPP) End Capped with Napthalimide or Phthalimide: Novel Small Molecular Acceptors for Organic Solar Cells
Author
Thu Trang Do 1   VIAFID ORCID Logo  ; Meera, Stephen 2   VIAFID ORCID Logo  ; Khai Leok Chan 3 ; Manzhos, Sergei 4   VIAFID ORCID Logo  ; Burn, Paul L 2 ; Sonar, Prashant 5 

 School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane 4001, Australia; [email protected]; Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia; [email protected] 
 Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia; [email protected] 
 Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Singapore 138634, Singapore; [email protected] 
 Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650, Boulevard Lionel-Boulet, Varennes, QC J3X1S2, Canada; [email protected] 
 School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane 4001, Australia; [email protected]; Centre for Material Science, Queensland University of Technology (QUT), 2 George Street, Brisbane 4001, Australia 
First page
4700
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550220014
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.