Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Long-acting (LA) HIV pre-exposure prophylaxis (PrEP) offers the potential to improve adherence by lowering the burden of daily or on-demand regimens of antiretroviral (ARV) drugs. This paper details the fabrication and in vitro performance of a subcutaneous and trocar-compatible implant for the LA delivery of tenofovir alafenamide (TAF). The reservoir-style implant comprises an extruded tube of a biodegradable polymer, poly(ε-caprolactone) (PCL), filled with a formulation of TAF and castor oil excipient. Parameters that affect the daily release rates of TAF are described, including the surface area of the implant, the thickness of the PCL tube walls (between 45 and 200 µm), and the properties of the PCL (e.g., crystallinity). In vitro studies show a linear relationship between daily release rates and surface area, demonstrating a membrane-controlled release mechanism from extruded PCL tubes. Release rates of TAF from the implant are inversely proportional to the wall thickness, with release rates between approximately 0.91 and 0.15 mg/day for 45 and 200 µm, respectively. The sustained release of TAF at 0.28 ± 0.06 mg/day over the course of 180 days in vitro was achieved. Progress in the development of this implant platform addresses the need for new biomedical approaches to the LA delivery of ARV drugs.

Details

Title
Characterization of a Reservoir-Style Implant for Sustained Release of Tenofovir Alafenamide (TAF) for HIV Pre-Exposure Prophylaxis (PrEP)
Author
Johnson, Leah M 1 ; Sai, Archana Krovi 1 ; Li, Linying 1 ; Girouard, Natalie 1 ; Demkovich, Zach R 2 ; Myers, Daniel 3 ; Creelman, Ben 3   VIAFID ORCID Logo  ; Ariane van der Straten 2 

 Engineered Systems, RTI International, 3040 E. Cornwallis Road, Research Triangle Park, NC 27709, USA 
 Women’s Global Health Imperative, RTI International, 351 California Street, Suite 500, San Francisco, CA 94104, USA 
 PATH, 2201 Westlake Ave, Suite 200, Seattle, WA 98121, USA 
First page
315
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
19994923
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550229319
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.