Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The objective of this study was to evaluate the intradermal delivery of curcumin utilising poly(vinylalcohol) (PVA)-based microneedles loaded with curcumin nanosuspension (CU-NS). Nanoprecipitation was used to formulate the CU-NS which was then incorporated into PVA microneedles arrays consisting of 11 × 11 microneedles of conical shape, measuring 900 µm in height and with 300 µm base diameter. The nanosuspension particle size was 520 ± 40 nm, with a polydispersity of 0.27 ± 0.02 using sodium lauryl sulfate (SLS) as a stabiliser. In vitro dissolution studies in 10% w/v Tween 80 showed that the CU-NS dissolved significantly faster than unmodified curcumin powder, with 34% released from the CU-NS, compared to 16% from the curcumin powder after 48 h. The CU-NS-loaded microneedles (CU-MN) were able to withstand a compression force of 32 N for 30 s. Moreover, these microneedles were able to penetrate excised neonatal porcine skin to a depth of 500 µm, dissolved completely in the skin within 60 min. After CU-MN dissolution, the drug diffused from the application site and migrated through the skin layers down to 2300 µm, significantly more than observed with topical application of CU-NS. This suggest that the fabricated microneedles with the incorporated CU-NS could enhance the intradermal delivery of curcumin.

Details

Title
Nanosuspension-Based Dissolving Microneedle Arrays for Intradermal Delivery of Curcumin
Author
Abdelghany, Sharif 1 ; Tekko, Ismaiel A 2   VIAFID ORCID Logo  ; Vora, Lalitkumar 3 ; Larrañeta, Eneko 3   VIAFID ORCID Logo  ; Andi Dian Permana 4   VIAFID ORCID Logo  ; Donnelly, Ryan F 3   VIAFID ORCID Logo 

 Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; School of Pharmacy, University of Jordan, Amman 11942, Jordan 
 Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Aleppo University, P.O. Box 12212, Aleppo, Syria 
 Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK 
 Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutics, Faculty of Pharmacy, Hasanuddin University, Makassar 90234, Indonesia 
First page
308
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
19994923
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550231308
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.