Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The lumpy zone in a blast furnace is composed of piles formed naturally during burden charging. The properties of this zone have significant effects on the blast furnace operation, including heat and mass transfer, chemical reactions and gas flow. The properties of the layers mainly include the angle of repose and porosity distribution. This paper introduces two methods, the Discharging Method and the Lifting Method, to study the influence of the packing method on the angle of repose of the pile. The relationships of the angle of repose and porosity with physical parameters are also investigated. The porosity distribution in the bottom of a pile shows a decreasing trend from the region below the apex to the center. The coordination number of the particles is employed to explain this change. The maximum of the frequency distribution of it was found to show a negative correlation to the static friction coefficient, but becomes insensitive to the parameter as the static friction coefficient increases above 0.6.

Details

Title
Discrete Element Method (DEM) and Experimental Studies of the Angle of Repose and Porosity Distribution of Pellet Pile
Author
Han, Wei 1 ; Li, Meng 1 ; Li, Ying 1 ; Yao Ge 1 ; Saxén, Henrik 2   VIAFID ORCID Logo  ; Yu, Yaowei 1 

 State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China 
 Thermal and Flow Engineering Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Biskopsgatan 8, FI-20500 Åbo, Finland 
First page
561
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
22279717
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550236956
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.