Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Visual quality and algorithm efficiency are two main interests in video frame interpolation. We propose a hybrid task-based convolutional neural network for fast and accurate frame interpolation of 4K videos. The proposed method synthesizes low-resolution frames, then reconstructs high-resolution frames in a coarse-to-fine fashion. We also propose edge loss, to preserve high-frequency information and make the synthesized frames look sharper. Experimental results show that the proposed method achieves state-of-the-art performance and performs 2.69x faster than the existing methods that are operable for 4K videos, while maintaining comparable visual and quantitative quality.

Details

Title
A Fast 4K Video Frame Interpolation Using a Hybrid Task-Based Convolutional Neural Network
Author
Ha-Eun Ahn 1 ; Jeong, Jinwoo 2 ; Je Woo Kim 2 

 Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Korea; Korea Electronics Technology Institute, Sungnam 13509, Korea 
 Korea Electronics Technology Institute, Sungnam 13509, Korea 
First page
619
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20738994
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550270055
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.