Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Wildfire plays an important role in ecosystem dynamics, land management, and global processes. Understanding the dynamics associated with wildfire, such as risks, spatial distribution, and effects is important for developing a clear understanding of its ecological influences. Remote sensing technologies provide a means to study fire ecology at multiple scales using an efficient and quantitative method. This paper provides a broad review of the applications of remote sensing techniques in fire ecology. Remote sensing applications related to fire risk mapping, fuel mapping, active fire detection, burned area estimates, burn severity assessment, and post-fire vegetation recovery monitoring are discussed. Emphasis is given to the roles of multispectral sensors, lidar, and emerging UAS technologies in mapping, analyzing, and monitoring various environmental properties related to fire activity. Examples of current and past research are provided, and future research trends are discussed. In general, remote sensing technologies provide a low-cost, multi-temporal means for conducting local, regional, and global-scale fire ecology research, and current research is rapidly evolving with the introduction of new technologies and techniques which are increasing accuracy and efficiency. Future research is anticipated to continue to build upon emerging technologies, improve current methods, and integrate novel approaches to analysis and classification.

Details

Title
A Review of the Applications of Remote Sensing in Fire Ecology
Author
Jensen, Jennifer L R  VIAFID ORCID Logo 
First page
2638
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550274360
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.