Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Land use and land cover (LULC) are diverse and complex in urban areas. Remotely sensed images are commonly used for land cover classification but hardly identifies urban land use and functional areas because of the semantic gap (i.e., different definitions of similar or identical buildings). Social media data, “marks” left by people using mobile phones, have great potential to overcome this semantic gap. Multisource remote sensing data are also expected to be useful in distinguishing different LULC types. This study examined the capability of combined multisource remote sensing images and social media data in urban LULC classification. Multisource remote sensing images included a Chinese ZiYuan-3 (ZY-3) high-resolution image, a Landsat 8 Operational Land Imager (OLI) multispectral image, and a Sentinel-1A synthetic aperture radar (SAR) image. Social media data consisted of the hourly spatial distribution of WeChat users, which is a ubiquitous messaging and payment platform in China. LULC was classified into 10 types, namely, vegetation, bare land, road, water, urban village, greenhouses, residential, commercial, industrial, and educational buildings. A method that integrates object-based image analysis, decision trees, and random forests was used for LULC classification. The overall accuracy and kappa value attained by the combination of multisource remote sensing images and WeChat data were 87.55% and 0.84, respectively. They further improved to 91.55% and 0.89, respectively, by integrating the textural and spatial features extracted from the ZY-3 image. The ZY-3 high-resolution image was essential for urban LULC classification because it is necessary for the accurate delineation of land parcels. The addition of Landsat 8 OLI, Sentinel-1A SAR, or WeChat data also made an irreplaceable contribution to the classification of different LULC types. The Landsat 8 OLI image helped distinguish between the urban village, residential buildings, commercial buildings, and roads, while the Sentinel-1A SAR data reduced the confusion between commercial buildings, greenhouses, and water. Rendering the spatial and temporal dynamics of population density, the WeChat data improved the classification accuracies of an urban village, greenhouses, and commercial buildings.

Details

Title
Urban Land Use and Land Cover Classification Using Multisource Remote Sensing Images and Social Media Data
Author
Shi, Yan 1 ; Qi, Zhixin 1 ; Liu, Xiaoping 1 ; Niu, Ning 2 ; Zhang, Hui 1 

 Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China 
 School of Resources and Environment, Academician Laboratory for Urban and Rural Spatial Data Mining of Henan Province, Henan University of Economics and Law, Zhengzhou 450000, China 
First page
2719
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550274635
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.