Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Hurricane Harvey was one of the most extreme weather events to occur in Texas, USA; there was a huge amount of urban flooding in the city of Houston and the adjoining coastal areas. In this study, we reanalyze the spatiotemporal evolution of inundation during Hurricane Harvey using high-resolution two-dimensional urban flood modeling. This study’s domain includes the bayou basins in and around the Houston metropolitan area. The flood model uses the dynamic wave method and terrain data of 10-m resolution. It is forced by radar-based quantitative precipitation estimates. To evaluate the simulated inundation, on-site photos and water level observations were used. The inundation extent and severity are estimated by combining the retrieved water depths, images collected from the impacted area, and high-resolution terrain data. The simulated maximum inundation extent, which is frequently found outside of the designated flood zones, points out the importance of capturing multi-scale hydrodynamics in the built environment under extreme rainfall for effective flood risk and emergency management.

Details

Title
Retrospective Dynamic Inundation Mapping of Hurricane Harvey Flooding in the Houston Metropolitan Area Using High-Resolution Modeling and High-Performance Computing
Author
Seong Jin Noh 1   VIAFID ORCID Logo  ; Jun-Hak, Lee 2 ; Lee, Seungsoo 3   VIAFID ORCID Logo  ; Dong-Jun, Seo 1 

 Department of Civil Engineering, University of Texas at Arlington, Arlington, TX 76019, USA 
 Department of Earth & Environmental Sciences, University of Texas at Arlington, Arlington, TX 76019, USA 
 Prediction Research Team, APEC Climate Center, Pusan 48058, South Korea 
First page
597
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550290231
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.