Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Many viruses initiate interaction with target cells by binding to cell surface glycosaminoglycans (GAGs). Heparan sulfate (HS) appears to be particularly important in fibroblasts, epithelial cells and endothelial cells, where it represents the dominant GAG. How GAGs influence viral infectivity in HS-poor target cells such as macrophages has not been clearly defined. Here, we show that mouse cytomegalovirus (MCMV) targets HS in susceptible fibroblasts and cultured salivary gland acinar cells (SGACs), but not in macrophage cell lines and primary bone marrow-derived macrophages, where chondroitin sulfate was the dominant virus-binding GAG. MCK-2, an MCMV-encoded GAG-binding chemokine that promotes infection of macrophages as part of a gH/gL/MCK-2 entry complex, was dispensable for MCMV attachment to the cell surface and for direct infection of SGACs. Thus, MCMV tropism for target cells is markedly influenced by differential GAG expression, suggesting that the specificity of anti-GAG peptides now under development as HCMV therapeutics may need to be broadened for effective application as anti-viral agents.

Details

Title
Mouse Cytomegalovirus Differentially Exploits Cell Surface Glycosaminoglycans in a Cell Type-Dependent and MCK-2-Independent Manner
Author
Murphy, Philip M
First page
31
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
19994915
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550318115
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.