Full text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The CRISPR/Cas system protects bacteria against bacteriophage and plasmids through a sophisticated mechanism where cas operon plays a crucial role consisting of cse1 and cas3. However, comprehensive studies on the regulation of cas3 operon of the Type I-E CRISPR/Cas system are scarce. Herein, we investigated the regulation of cas3 in Escherichia coli. The mutation in gcvP or crp reduced the CRISPR/Cas system interference ability and increased bacterial susceptibility to phage, when the casA operon of the CRISPR/Cas system was activated. The silence of the glycine cleavage system (GCS) encoded by gcvTHP operon reduced cas3 expression. Adding N5, N10-methylene tetrahydrofolate (N5, N10-mTHF), which is the product of GCS-catalyzed glycine, was able to activate cas3 expression. In addition, a cAMP receptor protein (CRP) encoded by crp activated cas3 expression via binding to the cas3 promoter in response to cAMP concentration. Since N5, N10-mTHF provides one-carbon unit for purine, we assumed GCS regulates cas3 through associating with CRP. It was evident that the mutation of gcvP failed to further reduce the cas3 expression with the crp deletion. These results illustrated a novel regulatory pathway which GCS and CRP co-regulate cas3 of the CRISPR/Cas system and contribute to the defence against invasive genetic elements, where CRP is indispensable for GCS regulation of cas3 expression.

Details

Title
Glycine Cleavage System and cAMP Receptor Protein Co-Regulate CRISPR/cas3 Expression to Resist Bacteriophage
Author
Yang, Denghui 1 ; Wang, Zhaofei 1 ; Ma, Jingjiao 1   VIAFID ORCID Logo  ; Fu, Qiang 1 ; Wu, Lifei 1 ; Wang, Hengan 1 ; Wang, Shaohui 2 ; Yan, Yaxian 1 ; Sun, Jianhe 1 

 Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; [email protected] (D.Y.); [email protected] (Z.W.); [email protected] (J.M.); [email protected] (Q.F.); [email protected] (L.W.); [email protected] (H.W.) 
 Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; [email protected] 
First page
90
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
19994915
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550319416
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.