Full Text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Graphene is a new type of carbon material with a flexible, two-dimensional structure. Due to the excellent stability of its lattice structure and its mechanical flexibility, graphene-based materials can be applied in flexible humidity sensors. At present, the application of graphene-based flexible humidity sensors in the fields of medical care and environmental monitoring is attracting widespread attention. In this review, the basic properties of graphene oxide (GO) and reduced graphene oxide (rGO) as moisture-sensitive materials and methods for their preparation were introduced. Moreover, three methods for improving the performance of moisture-sensitive materials were discussed. The working principle of different types of graphene-based humidity sensors were introduced. The progress in the research on graphene-based flexible humidity sensors in four respects: Human respiration, skin moisture, human sweat, and environmental humidity were discussed. Finally, the future research, following the development trends and challenges, to develop the potential of integrated, graphene-based flexible humidity sensors were discussed.

Details

Title
Research Progress of Graphene-Based Flexible Humidity Sensor
Author
Liang, Rongxuan 1 ; Luo, Ansheng 1 ; Zhang, Zhenbang 1 ; Li, Zhantong 1 ; Han, Chongyang 1 ; Wu, Weibin 1 

 College of Engineering, South China Agricultural University, Guangzhou 510642, China; [email protected] (R.L.); [email protected] (A.L.); [email protected] (Z.Z.); [email protected] (Z.L.); [email protected] (C.H.); Division of Citrus Machinery, China Agriculture Research System, Guangzhou 510642, China 
First page
5601
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550321348
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.