Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper is concerned with auto-focus of microscopes for the surface structure of transparent materials under transmission illumination, where two distinct focus states appear in the focusing process and the focus position is located between the two states with the local minimum of sharpness. Please note that most existing results are derived for one focus state with the global maximum value of sharpness, they cannot provide a feasible solution to this particular problem. In this paper, an auto-focus method is developed for such a specific situation with two focus states. Firstly, a focus state recognition model, which is essentially an image classification model based on a deep convolution neural network, is established to identify the focus states of the microscopy system. Then, an endpoint search algorithm which is an evolutionary algorithm based on differential evolution is designed to obtain the positions of the two endpoints of the region where the real focus position is located, by updating the parameters according to the focus states. At last, a region search algorithm is devised to locate the focus position. The experimental results show that our method can achieve auto-focus rapidly and accurately for such a specific situation with two focus states.

Details

Title
An Auto-Focus Method of Microscope for the Surface Structure of Transparent Materials under Transmission Illumination
Author
Liao, Yang 1 ; Xiong, Yonghua 2   VIAFID ORCID Logo  ; Yang, Yunhong 2 

 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China; [email protected] 
 School of Automation, China University of Geosciences, Wuhan 430074, China; [email protected]; Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, Wuhan 430074, China 
First page
2487
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550427580
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.