Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Evapotranspiration (ET) of soil-vegetation system is the main process of the water and energy exchange between the atmosphere and the land surface. Spatio-temporal continuous ET is vitally important to agriculture and ecological applications. Surface temperature and vegetation index (Ts-VI) triangle ET model based on remote sensing land surface temperature (LST) is widely used to monitor the land surface ET. However, a large number of missing data caused by the presence of clouds always reduces the availability of the main parameter LST, thus making the remote sensing-based ET estimation unavailable. In this paper, a method to improve the availability of ET estimates from Ts-VI model is proposed. Firstly, continuous LST product of the time series is obtained using a reconstruction algorithm, and then, the reconstructed LST is applied to the estimate ET using the Ts-VI model. The validation in the Heihe River Basin from 2009 to 2011 showed that the availability of ET estimates is improved from 25 days per year (d/yr) to 141 d/yr. Compared with the in situ data, a very good performance of the estimated ET is found with RMSE 1.23 mm/day and R2 0.6257 at point scale and RMSE 0.32 mm/day and R2 0.8556 at regional scale. This will improve the understanding of the water and energy exchange between the atmosphere and the land surface, especially under cloudy conditions.

Details

Title
Improving the Evapotranspiration Estimation under Cloudy Condition by Extending the Ts-VI Triangle Model
Author
Li, Boyang; Geng, Xiaozhuang; Li, Huan
First page
1516
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550452219
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.