Full text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the advancement of brain imaging techniques and a variety of machine learning methods, significant progress has been made in brain disorder diagnosis, in particular Autism Spectrum Disorder. The development of machine learning models that can differentiate between healthy subjects and patients is of great importance. Recently, graph neural networks have found increasing application in domains where the population’s structure is modeled as a graph. The application of graphs for analyzing brain imaging datasets helps to discover clusters of individuals with a specific diagnosis. However, the choice of the appropriate population graph becomes a challenge in practice, as no systematic way exists for defining it. To solve this problem, we propose a population graph-based multi-model ensemble, which improves the prediction, regardless of the choice of the underlying graph. First, we construct a set of population graphs using different combinations of imaging and phenotypic features and evaluate them using Graph Signal Processing tools. Subsequently, we utilize a neural network architecture to combine multiple graph-based models. The results demonstrate that the proposed model outperforms the state-of-the-art methods on Autism Brain Imaging Data Exchange (ABIDE) dataset.

Details

Title
Population Graph-Based Multi-Model Ensemble Method for Diagnosing Autism Spectrum Disorder
Author
Rakhimberdina, Zarina 1 ; Liu, Xin 2   VIAFID ORCID Logo  ; Murata, Tsuyoshi 1 

 Department of Computer Science, Tokyo Institute of Technology, Tokyo 152-8552, Japan; [email protected]; AIST-Tokyo Tech Real World Big-Data Computation Open Innovation Laboratory, Tokyo Institute of Technology, Tokyo 152-8550, Japan; [email protected] 
 AIST-Tokyo Tech Real World Big-Data Computation Open Innovation Laboratory, Tokyo Institute of Technology, Tokyo 152-8550, Japan; [email protected]; AI Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo 100-8921, Japan 
First page
6001
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550453269
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.