Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper presents a compact spectral detection system for common fluorescent and colorimetric assays. This system includes a gradient grating period guided-mode resonance (GGP-GMR) filter and charge-coupled device. In its current form, the GGP-GMR filter, which has a size of less than 2.5 mm, can achieve a spectral detection range of 500–700 nm. Through the direct measurement of the fluorescence emission, the proposed system was demonstrated to detect both the peak wavelength and its corresponding intensity. One fluorescent assay (albumin) and two colorimetric assays (albumin and creatinine) were performed to demonstrate the practical application of the proposed system for quantifying common liquid assays. The results of our system exhibited suitable agreement with those of a commercial spectrometer in terms of the assay sensitivity and limit of detection (LOD). With the proposed system, the fluorescent albumin, colorimetric albumin, and colorimetric creatinine assays achieved LODs of 40.99 and 398 and 25.49 mg/L, respectively. For a wide selection of biomolecules in point-of-care applications, the spectral detection range achieved by the GGP-GMR filter can be further extended and the simple and compact optical path configuration can be integrated with a lab-on-a-chip system.

Details

Title
A Compact Detection Platform Based on Gradient Guided-Mode Resonance for Colorimetric and Fluorescence Liquid Assay Detection
Author
Gao, Jing-Jhong 1 ; Ching-Wei, Chiu 1 ; Kuo-Hsing, Wen 2 ; Cheng-Sheng, Huang 1 

 Department of Mechanical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; [email protected] (J.-J.G.); [email protected] (C.-W.C.) 
 Degree Program of Automation and Precision Engineering, College of Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; [email protected] 
First page
2797
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550454072
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.