Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Extremely high volumes of salty wastewater are produced by textile manufacturers daily. Therefore, brine recycling from the wastewater should be regarded as a crucial issue within the textile industry. Ozonation was used in this two-part study as a purification method for industrial textile wastewater polluted by low-molecular-weight salts (LMWS). Part 1 revealed the accumulation of ozonation by-products in a multi-recycling system. The objective of Part 2 was the scaling-up of the process and the investigation of the occurrence of by-products. It was found that ozonation works well in an alkaline reaction medium, which was characteristic of the wastewater from a dye house; an almost complete color removal was achieved within 30 min of treatment. The brine that was produced from the wastewater treated by ozonation in a 20 L bubble column reactor was recycled successfully. Dyeing of cotton with five types of reactive dyes in various shades resulted in very good values of DECMC, which is the normative color matching parameter, and were between 0.15 and 1.2. The color fastness obtained for upcycled fabrics were satisfactory, and not worse than standard values. Although accumulation of the side products was detected in Part 1, the fabric discharges produced in the scaled-up process were free from carcinogenic amines and heavy metals. The study indicated that ozonation can be applied in the industry as a method for textile wastewater recycling.

Details

Title
Brine Recycling from Industrial Textile Wastewater Treated by Ozone. By-Products Accumulation. Part 2: Scaling-Up
Author
Bilińska, Lucyna 1 ; Blus, Kazimierz 1 ; Gmurek, Marta 2   VIAFID ORCID Logo  ; Żyłła, Renata 3   VIAFID ORCID Logo  ; Ledakowicz, Stanisław 2 

 Textile Company Bilinski, Mickiewicza 29, 95-050 Konstantynow Lodzki, Poland 
 Faculty of Process & Environmental Engineering, Lodz University of Technology, Wolczanska 213, 90-924 Lodz, Poland 
 Textile Research Institute, Brzezinska 5/15, 92-103 Lodz, Poland 
First page
233
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550454472
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.