Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In field-scale modeling, when the resuspension of sediment is modeled using a hydrodynamic model, a standard and common approach is to add a resuspension flux as the bottom boundary condition in the transport model. In this study, we show that the way of simply imposing an empirical bottom erosion formula as the flux is actually unrealistic. Its inability to stabilize the sediment concentration can cause excessive suspension fluxes in some extreme cases. Moreover, we present a modified erosion/deposition formula to model the resuspension of sediment. The formulation is based on volume conservation in the presence of erosion/deposition near the bottom. By taking into account the prescribed dry density of the bed material, the proposed formulation is able to produce realistic near-bed concentrations while ensuring model stability. The formulation is then tested in a one-dimensional vertical model and field modeling cases using a three-dimensional coastal circulation model. We show that the modified formulation is particularly important in modeling mud resuspension subject to the large bottom stress, which can be a result of waves or a strong river discharge.

Details

Title
Stabilized Formulation for Modeling the Erosion/Deposition Flux of Sediment in Circulation/CFD Models
Author
Yi-Ju Chou 1   VIAFID ORCID Logo  ; Yun-Chuan Shao 2 ; Yi-Hao, Sheng 2 ; Che-Jung, Cheng 2 

 Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan; Center for Advanced Study in Theoretical Sciences (CASTS), National Taiwan University, Taipei 106, Taiwan 
 Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan 
First page
197
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550454635
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.