Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Wetlands cover a significant part of the world’s land surface area. Wetlands are permanently or temporarily inundated with water and rich in nutrients. Therefore, wetlands equipped with Plant-Microbial Fuel Cells (Plant-MFC) can provide a new source of electricity by converting organic matter with the help of electrochemically active bacteria. In addition, sediments provide a source of electron donors to generate electricity from available (organic) matters. Eight lab-wetlands systems in the shape of flat-plate Plant-MFC were constructed. Here, four wetland compositions with activated carbon and/or marine sediment functioning as anodes were investigated for their suitability as a bioanode in a Plant-MFC system. Results show that Spartina anglica grew in all of the plant-MFCs, although the growth was less fertile in the 100% activated carbon (AC100) Plant-MFC. Based on long-term performance (2 weeks) under 1000 ohm external load, the 33% activated carbon (AC33) Plant-MFC outperformed the other plant-MFCs in terms of current density (16.1 mA/m2 plant growth area) and power density (1.04 mW/m2 plant growth area). Results also show a high diversity of microbial communities dominated by Proteobacteria with 42.5–69.7% relative abundance. Principal Coordinates Analysis shows clear different bacterial communities between 100% marine sediment (MS100) Plant-MFC and AC33 Plant-MFC. This result indicates that the bacterial communities were affected by the anode composition. In addition, small worms (Annelida phylum) were found to live around the plant roots within the anode of the wetland with MS100. These findings show that the mixture of activated carbon and marine sediment are suitable material for bioanodes and could be useful for the application of Plant-MFC in a real wetland. Moreover, the usage of activated carbon could provide an additional function like wetland remediation or restoration, and even coastal protection.

Details

Title
Activated Carbon Mixed with Marine Sediment is Suitable as Bioanode Material for Spartina anglica Sediment/Plant Microbial Fuel Cell: Plant Growth, Electricity Generation, and Spatial Microbial Community Diversity
Author
Sudirjo, Emilius 1   VIAFID ORCID Logo  ; Buisman, Cees JN 2 ; Strik, David PBTB 2 

 Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708WG Wageningen, The Netherlands; Government of Landak Regency, West Kalimantan Province 79357, Indonesia 
 Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708WG Wageningen, The Netherlands 
First page
1810
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550454911
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.