Full text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Laser Raman spectroscopy (LRS) is a highly specific biomolecular technique which has been shown to have the ability to distinguish malignant and normal breast tissue. This paper discusses significant advancements in the use of LRS in surgical breast cancer diagnosis, with an emphasis on statistical and machine learning strategies employed for precise, transparent and real-time analysis of Raman spectra. When combined with a variety of “machine learning” techniques LRS has been increasingly employed in oncogenic diagnostics. This paper proposes that the majority of these algorithms fail to provide the two most critical pieces of information required by the practicing surgeon: a probability that the classification of a tissue is correct, and, more importantly, the expected error in that probability. Stochastic backpropagation artificial neural networks inherently provide both pieces of information for each and every tissue site examined by LRS. If the networks are trained using both human experts and an unsupervised classification algorithm as gold standards, rapid progress can be made understanding what additional contextual data is needed to improve network classification performance. Our patients expect us to not simply have an opinion about their tumor, but to know how certain we are that we are correct. Stochastic networks can provide that information.

Details

Title
Review of Laser Raman Spectroscopy for Surgical Breast Cancer Detection: Stochastic Backpropagation Neural Networks
Author
Kothari, Ragini 1 ; Fong, Yuman 1 ; Storrie-Lombardi, Michael C 2 

 Department of Surgery, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA; [email protected] 
 Kinohi Institute, Inc., Santa Barbara, CA 93109, USA; [email protected]; Department of Physics, Harvey Mudd College, Claremont, CA 91711, USA 
First page
6260
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550455716
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.