It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The tropical seascape provides food and livelihoods to hundreds of millions of people, but the support of key habitats to this supply remains ill appreciated. For fisheries and conservation management actions to help promote resilient ecosystems, sustainable livelihoods, and food supply, knowledge is required about the habitats that help support fisheries productivity and the consequences of this for food security. This paper provides an interdisciplinary case study from the coral triangle of how seagrass meadows provide support for fisheries and local food security. We apply a triangulated approach that utilizes ecological, fisheries and market data combined with over 250 household interviews. Our research demonstrates that seagrass associated fauna in a coral triangle marine protected area support local food supply contributing at least 50% of the fish based food. This formed between 54% and 99% of daily protein intake in the area. Fishery catch was found to significantly vary with respect to village (p < 0.01) with habitat configuration a probable driver. Juvenile fish comprised 26% of the fishery catch and gear type significantly influenced this proportion (<0.05). Limited sustainability of fishery practices (high juvenile catch and a 51% decline in CPUE for the biggest fishery) and poor habitat management mean the security of this food supply has the potential to be undermined in the long-term. Findings of this study have implications for the management and assessment of fisheries throughout the tropical seascape. Our study provides an exemplar for why natural resource management should move beyond biodiversity and consider how conservation and local food security are interlinked processes that are not mutually exclusive. Seagrass meadows are under sustained threat worldwide, this study provides evidence of the need to conserve these not just to protect biodiversity but to protect food security.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Seagrass Ecosystem Research Group, College of Science, Wallace Building, Swansea University, SA2 8PP, UK
2 Institute of Life Sciences, College of Medicine, Swansea University, SA2 8PP, UK
3 Sustainable Places Research Institute, Cardiff University, 33 Park Place, Cardiff CF10 3BA, UK