It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
River deltas are a compelling target for numerical simulation because they contain seemingly organized patterns and shapes at a variety of scales. For instance, most river-dominated deltas, regardless of size, have triangular to semi-circular planform shapes, channel networks, and channel bifurcations. The common presence of these features among most deltas in the world (Caldwell et al., 2019; Nienhuis et al., 2020) suggests there are consistent underlying physical processes controlling delta form and behavior. In this review, we discuss how numerical modeling, and more specifically a type of modeling focused on the morphodynamic feedback, has helped explore some of these key physical processes over the last 15 years.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer