It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We recently started testing Chao’s proposed new matrix formalism for describing the spin dynamics due to a single spin resonance. The Chao formalism is probably the first fundamental improvement of the Froissart-Stora equation in that it allows analytic calculations of the beam polarization’s behavior inside a resonance. We tested the Chao formalism using a 1.85GeV/c polarized deuteron beam stored in COSY, by sweeping an rf dipole’s frequency through 200 Hz, while varying the distance from the sweep’s end frequency to an rf-induced spin resonance’s central frequency. Since the Froissart-Stora equation itself can make no prediction inside a resonance, we compared our experimental data with the predictions of the Chao formalism and those of an empirical two-fluid model based on the Froissart-Stora equation. The data strongly favor the Chao formalism.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer