It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Short period, high field undulators are used to produce hard x-rays on synchrotron radiation based storage ring facilities of intermediate energy and enable short wavelength free electron laser. Cryogenic permanent magnet undulators take benefit from improved magnetic properties of RE2Fe14B (Rare Earth based magnets) at low temperatures for achieving short period, high magnetic field and high coercivity. Using Pr2Fe14B instead of Nd2Fe14B , which is generally employed for undulators, avoids the limitation caused by the spin reorientation transition phenomenon, and simplifies the cooling system by allowing the working temperature of the undulator to be directly at the liquid nitrogen one (77 K). We describe here the development of a full scale (2 m), 18 mm period Pr2Fe14B cryogenic permanent magnet undulator (U18). The design, construction and optimization, as well as magnetic measurements and shimming at low temperature are presented. The commissioning and operation of the undulator with the electron beam and spectrum measurement using the Nanoscopmium beamline at SOLEIL are also reported.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer