It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A method to inject electron beams with controllable transverse emittances in a laser-plasma accelerators is proposed and analyzed. It uses two colliding laser pulses that propagate transversely to the plasma wave. For colliding pulses with equal frequencies, a beam with very low emittance is generated when the collision is close to the density peak of the plasma wave. Electrons near the axis are accelerated longitudinally by the ponderomotive force of the colliding pulses, accelerated transversely by the beat wave, and subsequently injected into the second bucket of the wake. Ionization is used to increase the transverse injection area and the final trapped charge. Simulations show that the transverse emittance can be less than the 0.1 mm mrad level, which is important for many applications. For colliding laser pulses with different frequencies, the beat wave can produce asymmetric injection, which can enhance betatron radiation generated by the electron beam.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer