Abstract

Self-healability is essential for supercapacitors to improve their reliability and lifespan when powering the electronics. However, the lack of a universal healing mechanism leads to low capacitive performance and unsatisfactory intelligence. Here, we demonstrate a multi-responsive healable supercapacitor with integrated configuration assembled from magnetic Fe3O4@Au/polyacrylamide (MFP) hydrogel-based electrodes and electrolyte and Ag nanowire films as current collectors. Beside a high mechanical strength, MFP hydrogel exhibits fast optical and magnetic healing properties arising from distinct photothermal and magneto-thermal triggered interfacial reconstructions. By growing electroactive polypyrrole nanoparticles into MFP framework as electrodes, the assembled supercapacitor exhibits triply-responsive healing performance under optical, electrical and magnetic stimuli. Notably, the device delivers a highest areal capacitance of 1264 mF cm−2 among the reported healable supercapacitors and restores ~ 90% of initial capacitances over ten healing cycles. These prominent performance advantages along with the facile device-assembly method make this emerging supercapacitor highly potential in the next-generation electronics.

Self-healing property is important for supercapacitors when powering the electronics, but designing devices that possess a universal healing mechanism remains challenging. Here, the authors achieve an optically, electrically, and magnetically-responsive self-healing device with integrated configuration.

Details

Title
A multi-responsive healable supercapacitor
Author
Qin Haili 1 ; Liu, Ping 1 ; Chen Chuanrui 1 ; Huai-Ping, Cong 1   VIAFID ORCID Logo  ; Shu-Hong, Yu 2   VIAFID ORCID Logo 

 Hefei University of Technology, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei, P. R. China (GRID:grid.256896.6) 
 University of Science and Technology of China, Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Institute of Energy, Hefei Comprehensive National Science Center, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Hefei, P. R. China (GRID:grid.59053.3a) (ISNI:0000000121679639) 
Publication year
2021
Publication date
2021
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2551410185
Copyright
© The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.