It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Recent progress in plasma based accelerator technology has demonstrated its ability to deliver high energy (GeV) beams in compact structures (centimeter to meter scale plasmas). Current developments of that technology are oriented toward producing beams with quality and energy spread comparable to those obtained using standard accelerating structures. In plasma based accelerators, the beam energy spread can be improved during the acceleration process through beam loading. To achieve optimum beam loading, the beam has to be shaped such that the superposition of its space charge fields and plasma fields result in a uniform accelerating field. In this work we show how beam-induced-ionization injection can be used to shape and inject a trailing beam suitable for beam loading. Our particle-in-cell numerical simulations done with OSIRIS show the ionization injection of a shaped 340 pC, 13 kA and3μmlong electron beam accelerated to 900 MeV in less than 3 cm of plasma. The configurations considered numerically were based on the beams and plasmas that have been and will be available at the FACET facility.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer