It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The typical treatment of time-dependent potentials, such as those used for radio frequency cavities, is to average a potential’s time component through the interval that a reference particle spends in the cavity. Such an approach, using the so-called transit-time factor, uses time as the independent variable in the Hamiltonian. In this paper, we instead propose a fully covariant Hamiltonian to treat a potential’s time component like any other space component. We show how to calculate the dynamics of particles in a pill-box cavity using an explicit symplectic integrator. Finally, we compare the results with the simulator tracewin.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





